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The excitation of thermally induced oscillations in low-temperature helium 
flow in channels with different orientation are studied and the boundaries 
of stability are constructed. 

It is well known that when one- and two-phase flows are heated in heat exchangers spon- 
taneous pulsational flow regimes are possible for a certain combination of working parameters, 
including in low-temperature helium flows at supercritical pressure [1-3]. Oscillations of 
the flow rate, temperature, and pressure of the heat-transfer agent have a direct effect on 
the operating charactistics of power-generating equipment and, in many cases, are completely 
inadmissible. 

To achieve high reliability of cryogenic equipment, cooled with a circulating helium 
flow at a temperature of 4.2-10 K, the conditions of excitation of oscillations must be stud- 
ied and measures must be developed to increase the stability of cooling. 

The experiments of [2] and later the calculations of [4] for the case of purely forced 
convection of helium demonstrated that the boundary of stability can be represented in the 
form of dependence ~ = f(R), where ~ = (Apl + Aplm)/(Ap2 m + Ap=); R = (Pin - Pout)/Pin. 

The parameter ~ is defined as the ratio of the pressure losses on separate sections of 
the channel separated by the cross section where the temperature of the liquid equals the 
pseudocritical temperature (Tli q = Tm), and is the analog of the well-known criterion of P. 
A. Petrov for evaluating the stability of two-phase flows [5]. The other parameter R charac- 
terizes the degree of volume expansion of the working body when the body is heated. The cal- 
culations and experiments were performed for a pipe with a constant length L = 185 m [the re- 
duced length L = $(L/D) = i000] and the resistance coefficients of the throttles (K = G2/pu 2) 
at the inlet and outlet of the channel Kin = 120-2700 and Kou t = 1000-23,700. 

It is not obvious that # and R can be used to evaluate the stability of the flow of 
liquid in a mass force field. This follows from the fact that for flow in vertical pipes the 
magnitude of the leveling heads can be comparable and even greater than the pressure drops 
owing to frictional hydraulic losses. In this case the quantity ~ will depend more on the 
ratios of the leveling heads along the channel than on the hydraulic losses. 

The relative volume expansion of the gas in the channel in its turn depends not only on 
the heat load (qw/PU) but also on the magnitude of the pressure drop, which is especially im- 
portant in long channels [L = $(L/D)]. The effect of the length and of the absolute values 
of the resistance coefficients of the throttles Kin and Kou t at the channel inlet and outlet 
on the stability under conditions of forced convection of helium was studied in [6]. It was 
shown that for Kin = Kou t = 0 the stability is virtually independent of L, while the bound- 
ary of stability approaches the limiting value R = i0. 

The purpose of this work is to make a comparative analysis of the stability of helium 
flow at supercritical pressure under conditions of purely forced convection with rising and 
sinking flow for a wide range of values of the numbers Re = 103-105 and GrA/Re 2 = 3.0"10 -7- 
i.i.i0 -l, i.e., including the region where heat transfer is observed to depend appreciably 
on thermogravitation [3]. 

The dynamic processes were studied with the help of the classical method of the theory 
of linear automatic-control systems [7]. The mathematical model of the processes of interest 
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consists of the following equations: 

Dp 
- - = 0 ;  (1 )  

Df 

Dh l-I dp . (2)  
P - D r  . . . .  - F  - + ' 

Du dp ~ PU2II + mgp, ( 3 )  

Dt dx 2F 

where m = 1 for the rising flow and m = -i for the sinking flow; 

p = / ( h ,  p). 

The coefficient of friction was determined from the relation [8] 

(4) 

= ( 1,82 Ig Re -- 1,64) -~. 

The b o u n d a r y  c o n d i t i o n s  a t  t h e  ends  o f  t h e  c h a n n e l  a r e  t a k e n  in  t h e  fo rm 

(5) 

x = 0 : Apl = P0 - -  Pin = KinPoU~, x = L : Ap~ = PN - -  Pout = / (out  OoutU~ut . (6 )  

I t  iS assumed  t h a t  t h e  p r e s s u r e  a t  t h e  p i p e  i n l e t  in  f r o n t  o f  t h e  t h r o t t l e  and a t  t h e  
p i p e  o u t l e t  as  w e l l  as  t h e  t e m p e r a t u r e  a t  t h e  p i p e  i n l e t  a r e  m a i n t a i n e d  c o n s t a n t .  

We s h a l l  s t u d y  t h e  s t a b i l i t y  o f  a dynamic  s y s t e m  w i t h  d i s t r i b u t e d  p a r a m e t e r s  " i n  t h e  
s m a l l , "  i . e . ,  t h e  s t a b i l i t y  o f  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 ) - ( 5 )  in  t h e  l i n e a r  a p p r o x i m a t i o n .  
I n  p e r f o r m i n g  t h e  c a l c u l a t i o n s  t h e  h e a t  f l u x  f rom t h e  p i p e  w a l l  t o  t h e  h e l i u m  was assumed t o  
be  c o n s t a n t ;  t h i s  i s  a good a p p r o x i m a t i o n  f o r  low f r e q u e n c i e s  o f  o s c i l l a t i o n s  o f  t h e  t e m p e r a -  
t u r e  of the wall with thickness b: 

~ X.w l (7) 
0wOw b ~ 

The traditional self-excited oscillatory system includes an energy source, a valve, an 
oscillatory system, and feedback on the valve; the energy source and the valve are both placed 
in the input valve, while the kinetic energy of the flow is the energy source. The feedback 
(in this case, on the pressure perturbation after the input valve 6pi) connects the oscilla- 
tory system (the equations of conservation and state and the boundary condition at the output 
from the pipe) with the flow rate of the working body at the input and changes the kinetic 
energy of the flow, i.e., it controls the energy input to the oscillatory system. When the 
pressure after the input valve increases with time, the flow rate decreases and therefore the 
kinetic energy of the flow decreases as compared with the stationary flow. The decrease in 
the kinetic energy later leads to a decrease in the pressure after the input valve. It is 
obvious that this relation between the perturbations of the pressure and the flow rate for 
some ratio of the phases of the oscillations, determined by the feedback, can lead to excita- 
tion of the system. 

We set u = u + 6u, p = p + 6p, h = h + 6h, where u, p, and h are the values of the flow 
parameters distributed along the pipe under stationary conditions. 

After linearization the equations (1)-(4) assume the following form: 

06p 06u 06p 
+ ~p ~ + ~ = 0, (a) 

o---f- + ~ ox ox ox + ~u o~ 

ot  ox  -~x + = o, p ox ~ ox p Ox -~ Ot 

06u + (St~ O~ - o~ - -  06u 06,0 1 ~l-I - -  ( t o )  
- - Z  ~ + ~p~ ~ + p u. Ox + --ox + --2 =--F (20. ~u + ~ p )  - mgsp = o, 

6p= ( Pl 1 \ 6h /p ~ Op h 
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Because the properties of helium in the near-critical region are strongly nonlinear 
functions of the temperature and the pressure, Eqs. (8)-(11) are written in the difference 
form with respect to x. The number of partitions is determined from the transfer function 
of the open contour, det@rmined with adequate accuracy, within • and by the degree of vari- 
ation of the parameters p, h, and u along the channel for a stationary flow. Then 

af - -  *tJ + ~ h + l ,  d*__j_t _- _ ~b+~ - 86 

2 dx Ax 
where f = h, u, and p; j = i, ..., N. 

We have the following boundary conditions 

(12) 6 (hpO = - -  @a = 2KinPoUo3Ul, 

--Kout(gtt-)Z (~h )p~hN + 2Kout gU6UN 
8 (Ap~) = @ i v  = - - Ov (13)  

In the derivation of Eq. (12) the fact that in the absence of heat inflows at the valve 
inlet and for not very strong narrowing of the passage in the valve as compared with the cross 
section of the pipe ~u i = 6u 0 was taken into account. In the case of large over compression of 
the flow a corresponding constant factor, greater than unity, must be introduced into Eq. (12). 

The stability of a dynamic system with distributed parameters and with delay is analyzed 
using Nyquist's frequency criterion based on the argument principle [7]. This method was em- 
ployed, in particular, to analyze the thermohydraulic stability of helium flow at supercriti- 
cal pressure under conditions of purely forced convection [4]. It was shown that the compu- 
tational and experimental results are in satisfactory agreement. 

After the linearized system of equations (8)-(10) with the boundary conditions (11)-(12) 
is Laplace transformed and the equations are represented in a difference form, and setting 
the starting perturbation at the input into the channel 6u I = i, we obtain a system of 3N 
linear algebraic equations, whose solution for the functions 6uj, 6pj, and 6hj is sought by 
the matrix sweep method [9]. 

The transfer function of feedback H(s) = 6pl/6u I - the ratio of the perturbations of the 
pressure and the velocity of the liquid at the channel inlet - can be determined from the so- 
lution of the system of equations. The transfer function for direct coupling is determined 
from Eq. (12) for the inlet throttle 

J (s) = 0,5 (Ki~p#0) -1. 

The t r a n s f e r  f u n c t i o n  o f  an open l o o p  e q u a l s  t h e  p r o d u c t  J ( s ) H ( s ) .  The s t a b i l i t y  o f  a 
dynamic closed system is determined by the position of the hodograph of the amplitude-phase 
frequency charcteristic of an open loop with the parameter s = im relative to the singular 
point (-i, i0). 

It is obvious that for relatively short pipes [Kin , Kou t >> $(L/D)] , neglecting the 
leveling head, 

= ~i --~ l<in ~out (14) 

Kout %n 

In this case the boundary of stability can be constructed in the system of coordinates 

= Kin/Kou t = f(R). 

Figure 1 shows the boundary of stability for helium flow under conditions of purely 
forced convection in a relatively short channel (L < 50) in terms of the function K = f(R, 
Kout). To the right of the boundary pulsational flow regimes can appear. For a pipe open 
at the outlet (no throttle), under conditions of turbulent flow Kou t = 2. In the region K < 
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Fig. i. Map of the stability under conditions of forced con- 
vection, L = 0.6 m; D = 1.8"10 -3 m; Rein = 104; Tin = 4.2 K; 
p = 0.25 MPa; Kou t = 1 (i); 2 (2); i00 (3); 500 (4); 104 (5). 

Fig. 2. Map of the stability under conditions of forced con- 
vection, D = (1.8-4)'10 -3 m; Rein = 104; Tin = 4.2 K; p = 0.25 

MPa; i) Kout(Kin) = 2 (i); 2) 2 (4); 3) 2 (8). 

1o5, which includes the case of a channel open at both ends and with sharp rims without 
throttles (K = 0.5), as Kou t increases the boundary of stability shifts toward smaller val- 
ues of R and reaches the limiting value R = 2.8. In the region K > 1.5 the boundary of sta- 
bility shifts toward larger values of R, and the larger Kou t is the lower the relative throt- 
tling for which a stable state can be obtained. 

It should be noted that enlarging the region of stability by increasing the resistance 
of the throttle at the outlet with constant K involves an increase in the overall hydraulic 
losses, which vary under otherwise equal conditions at the inlet in the ratio 

ap ~Kout.{f+ R + 1). (15) 
For t h i s  r e a s o n ,  f o r  example ,  t h e  t o t a l  h y d r a u l i c  l o s s e s  accompanying  e x p a n s i o n  o f  t h e  

flow R = 12 at the boundary of stability will be two orders of magnitude larger for Kou t = 
500 (K = 4) than for Kou t = 2 (K = 12) (Fig. i). 

The effect of the channel length on the stability is not single-valued (Fig. 2). For 
small values of Kou t the stability in the region L > 30 is virtually independent of the length 
and the ratio K. For L < 30 and K > 2.5 the stability increases as the length increases, 
while for K < 2.5, conversely, it decreases. The dependence of the stability on the channel 
length is shown in Fig. 3 for a wide range of values of Kou t. In the region of small K in- 
creasing the channel length leads to significant stabilization of the flow, and in addition 
the dependence on Kou t is insignificant. For K > 2, on the other hand, the hydraulic resis- 
tance at the output from the channel has a stronger effect on the thermohydraulic stability. 

The representation of the computational results in terms of the coordinates ~-R qualita- 
tively describes the same character of the dependence of the stability on the flow and chan- 
nel parameters; only the boundary of stability in the direction of the ordinate axis is de- 
formed. The correlation coefficient between K and the boundary of stability, determined from 
the hodograph of the function H(s)J(s), is not worse than for the parameter ~, including ex- 
perimental data [2]. The effect of the position of the point with the pseudocritical tem- 
perature Tli q = T m relative to the channel inlet and outlet on the boundary of stability was 
insignificant (for the same degree of expansion of helium). It should be noted that the cal- 
culations were performed for temperatures at the inlet Tin > 4 K. The cross section of the 
channel with Tli q = T m for regimes on the boundary of stability was located close to the chan- 
nel input, while the hydraulic resistance was determined primarily by the pressure losses in 
the pipe after the cross section with Tli q = T m and on the throttling devices. 

In the experimental study of thermally induced oscillations in a helium flow at super- 
critical pressure in [2] the resistance coefficient Kou t varied over a wide range Kou t = (i- 
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Fig. 3. Map of the stability under conditions of forced con- 
vection p = 0.25 MPa; Rin = i0~; Tin = 4.2 K; i, 2) L = 185 m, 
D = 4"10 -3 m, Kou t = 2 and 100 respectively; 3) L = 0.6 m, D = 
1.8-10 -3 m, Kou t = i00. 

Fig. 4. Map of the stability under conditions of mixed and 
forced convection in a vertical pipe, p = 0.25 MPa; Tin = 4.2 
K; L = 0.6 m; D = 1.8"10 -2 m; Kin = i; Kou t = 2: I, IV) regions 
of stable states; II) regions of pulsational states; III) region 
of aperiodic instability; a) rising flow, b) sinking flow; the 
broken line is the boundary of stability (of pulsational regimes) 
with forced and mixed convection. 

23.7)'103 , and K = 0.2"269. Based on the dependence of the boundary of stability on the ab- 
solute value of Kout, presented in [2], the boundary of stability must be regarded as approxi- 
mate, especially in the region of large volume expansions (R > 6). 

For helium flow in vertical pipes for Reynolds numbers Re > 8000 the boundary of sta- 
bility does not depend on the direction of flow and is the same as for purely forced convec- 
tion (Fig. 4), i.e., it is determined by the ratio of the hydraulic resistances at the ends 
of the pipe and the variation of the helium density along the channel and does not depend on 
the number Gr. Analogous results regarding the independence of the boundary of stability 
from thermogravitation under conditions of rising helium flow in a vertical pipe were noted 
in [3]. The boundary of stability in the experiments R = i, which is less than in the calcu- 
lations (Rmi n = 2.8). This discrepancy can, on the one hand, be associated with the charac- 
teristics of the heat-exchange flow through part of the experimental apparatus and the exis- 
tence of additional feedbacks through the heat exchangers; on the other hand, the region at 
the wall was not taken into account in the calculations based on the one-dimensional model 
of the flow. For large departures from isothermal conditions the region at the wall can have 
a destabilizing effect; this is manifested as a decrease in the stability as the length of 
the heated section decreases for equal degrees of volume expansion of the gas [i0]. 

For low Reynolds numbers Re the stability depends on the direction of the flow. For 
sinking flow, conditions for aperiodic instability (region III, Fig. 4) arise; this corre- 
sponds to the point on the hodograph of the amplitude-phase frequency characteristic of an 
open loop with ~ = 0. As is well known, aperiodic instability arises with a negative depen- 
dence of the change in the hydraulic resistance of the heated section of the pipe on the 
change in the flow rate (dPin/dG < 0). The change in the sign of dp/dG as the flow rate in- 
creases under the conditions of sinking motion characterizes the multi-valued nature of the 
hydraulic characteristic in the presence of a leveling head, whose vector is directed opposite 
to the vector of the pressure drop for overcoming the friction forces. 

The appearance of aperiodic instability in loops with a heated sinking branch was noted 
in many works on the flow of water in a two-phase state and under supercritical pressure [ii]. 
It was also noted that reverse flow of water is the most dangerous type of instability. A 
unique flow rate was not obtained, if the flow rate dropped below the corresponding minimum 
of the hydraulic characteristic Ap = f(G), while the pressure drop in the loop was close to 
the minimum values. 
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NOTATION 

c, heat capacity; D, diameter; F, area of the transverse cross section; G, flow rate; 
GrA, Grashof number; g, acceleration of gravity; h, enthalpy; p, pressure; N, perimeter; Re, 
Reynolds number; s, complex Laplace transform variable; T, temperature; t, time; x, distance 
along the channel; ~, thermal conductivity; m, circular frequency of the pulsations; and p, 
specific density. The indices denote the following: in, at the inlet to the channel; out, 
at the outlet from the channel; liq, the flow; 0, in front of the throttle at the channel in- 
put; m, the pseudocritical temperature; N, in front of the throttle at the channel output; 
w and c, the pipe wall. 
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UNIVERSAL PROFILES AND LAW OF TURBULENT NEAR-WALL HEAT AND MASS TRANSFER 

V. F. Potemkin UDC 532.526 

Universal distributions that do not contain empirical constants are obtained 
in the turbulent core of the mean longitudinal velocity, temperature and con- 
centration of a substance for arbitrary Prandtl and Schmidt molecular numbers. 

The development of modern engineering in the domain that is characterized by the pres- 
ence of internal or external heat and mass transfer on streamlined surfaces is greatly re- 
tarded because there is no single description of this phenomenon for different values of the 
Pradtl and Schmidt numbers based on universal distributions of the velocity, temperature, and 
concentration of a substance that do not contain empirical constants, and a law of turbulent 
heat and mass transfer. Precisely the absence of experimental coefficients in such general- 
ized relationships permits their effective application in computations of complex flow condi- 
tions characteristic for energy-saving aggregates, consequently, setting up universal depen- 
dences is of great scientific and practical interest. An attempt is made in this paper to 
obtain such generalized relationships and the possibility is shown of their utilization to 
describe specific flows. 
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